翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Leonardo numbers : ウィキペディア英語版
Leonardo number
The Leonardo numbers are a sequence of numbers given by the recurrence:
:
L(n) =
\begin
1 & \mbox n = 0 \\
1 & \mbox n = 1 \\
L(n - 1) + L(n - 2) + 1 & \mbox n > 1 \\
\end

Edsger W. Dijkstra〔(EWD797 )〕 used them as an integral part of his smoothsort algorithm, and also analyzed them in some detail.〔(EWD796a )〕
Computing a second-order recurrence relation recursively and without memoization requires L(n) computations for the ''n''-th item of the series.
==Relation to Fibonacci numbers==
The Leonardo numbers are related to the Fibonacci numbers by the relation L(n) = 2 F(n+1) - 1, n \ge 0.
From this relation it is straightforward to derive a closed-form expression for the Leonardo numbers, analogous to Binet's formula for the Fibonacci numbers:
:L(n) = 2 \frac}- 1 = \frac \left(\varphi^ - \psi^\right) - 1 = 2F(n+1) - 1
where the golden ratio \varphi = \left(1 + \sqrt 5\right)/2 and \psi = \left(1 - \sqrt 5\right)/2 are the roots of the quadratic polynomial x^2 - x - 1 = 0.
The first few Leonardo numbers are
:1,\;1,\;3,\;5,\;9,\;15,\;25,\;41,\;67,\;109,\;177,\;287,\;465,\;753,\;1219,\;1973,\;3193,\;5167,\;8361, \ldots

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Leonardo number」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.